(참고 : 청록색으로 표시된 책은 2004, 2005학년도에 주교재로 쓰인 책입니다.)
2학년
| 과목 | 저자 | 제목 | 개설학기/격년여부 | 
|---|---|---|---|
| 선형대수학1,2 | 이인석 | 학부 대수학 강의1-선형대수와 군 | 1학기, 2학기 | 
| S.H. Friedberg, A.J. Insel, L.E. Spence | Linear Algebra, 4th ed. | ||
| S. Lang | Linear Algebra | ||
| 해석개론1,2 | 김성기, 김도한, 계승혁 | 해석개론, 개정판 | 1학기, 2학기 | 
| W. Rudin | Principles of Mathematical Analysis 3rd ed. | ||
| M. H. Protter and C. B. Murrey | A First Course in Real Analysis, 2nd ed. | ||
| 집합과수리논리 | Velleman | How to Prove it | 1학기 | 
| P. R. Halmos | Naive Set theory | ||
| K. Hrbacek and T. Jech | Introduction to set theory, 3rd edition | ||
| C. C. Pinter | Set Theory | ||
| 미분방정식 및 연습 | M. Braun | Differential Equations and their Applications, 4th ed. | 2학기 | 
| P. D. Ritger, N. J. Rose | Differential Equations with applications | ||
| Boyce, DiPrima | Elementary Differential Equations and Boundary Value Problems | 
3학년 
  
| 과목 | 저자 | 제목 | 개설학기/격년여부 | 
|---|---|---|---|
| 현대대수학 1,2 | J. B. Fraleigh | A first Course in Abstract Algebra, 6th ed. | 1학기, 2학기 | 
| N. Jacobson | Basic Algebra I | ||
| I. N. Herstein | Topics in Algebra | ||
| M. Artin | Algebra | ||
| 미분기하학개론 1,2 | 김홍종 | [1] [2] | 1학기, 2학기 | 
| B. O'Neil | Elementary Differential Geometry | ||
| M. P. do Carmo | Differential Geometry of Curves and Surfaces | ||
| McCleary | Geometry from a differentiable viewpoint | ||
| 복소함수론 | H. Silverman | Complex Variables | 1학기 | 
| L.V.Ahlfors | Complex Analysis | ||
| 수치선형대수 | Ward Cheney, David Kincaid | Numerical Mathematics and Computing, 5th ed. | 1학기 | 
| S. D. Conte and C. de Boor | Elementary Numerical Analysis | ||
| Cullen, CHarles G | An Introduction to Numerical Linear Algebra | ||
| 다변수해석학 | Michael Spivak | Calculus on Manifolds | 1학기 | 
| 수치해석개론 | J. Stoer, R. Bulirsch | Introduction to Numerical Anlaysis, 2nd ed. | 2학기 | 
| S.D. Conte, C. de Boor | Elementary Numerical Analysis, 3rd ed. | ||
| 복소해석학개론 | J.W. Brown and R.V. Churchill | Complex Variables and applications | 2학기 | 
| 위상수학개론1 | D. W. Kahn | Topology, An introduction to the Point-Set and Algebraic Areas | 2학기 | 
| J. R. Munkres | Topology : A First Course | ||
| 문명호, 박종일 | 위상수학입문 | 
4학년 
  
| 과목 | 저자 | 제목 | 개설학기/격년여부 | 
|---|---|---|---|
| 위상수학개론 2 | D. W. Kahn | Topology, An introduction to the Point-Set and Algebraic Areas | 1학기 | 
| J. R. Munkres | Topology : A First Course | ||
| W. S. Massey | Algebraic Topology: An Introduction | ||
| 문명호, 박종일 | 위상수학입문 | ||
| 편미분 방정식 | W. A. Strauss | Partial Differential Equations, An Introduction | 1학기 | 
| L. C. Evans | Berkeley Mathematics Lecture Notes, Volume 3A-3B | ||
| Zachmanoglou, Thoe | Introduction to Partial Differential Equations with applications | ||
| R.B. Guenther, J.W. Lee | Partial Differential Equations of Mathematical Physics and Integral Equations | ||
| 실변수함수론 | 김성기, 계승혁 | 실해석 | 1학기 | 
| H. L. Royden | Real Analysis | ||
| G. B. Folland | Real Analysis | ||
| F. Jones | Lebesgue integration on Euclidean space | ||
| 대수적코딩이론 | V. Pless | Introduction to the theory of error-correcting codes | 1학기/격년과목 | 
| R. J. McEliece | The theory of information and coding | ||
| J. H. van Lint | Introduction to coding theory | ||
| 정수론과암호 | N. Koblitz | A Course in Number Theory and Cryptography | 1학기/격년과목 | 
| D.R. Stinson | Cryptography - Theory and Practice | ||
| 박승안 | 대수학과 암호학 | ||
| 카오스와 동역학계 | Steven H. Strogatz | Nonlinear Dynamics and Chaos | 1학기/격년과목 | 
| 금융수학 | Baxter and Rennie | Financial Calculus | 1학기/격년과목 | 
| John C. Hull | Options, Futures, other Derivatives, 4th ed. | ||
| 기하대수 | Morton L. Curtis | Matrix Groups | 2학기/격년과목 | 
| 수학사 | Eves | Introduction to the history of mathematics | 2학기 | 
| 대수기하학개론 | W. Fulton | Algebraic Curves | 2학기/격년과목 | 
| 응용편미분방정식 | j. Billingham and A.C. King, Wave Motion, | Cambridge Texts in Applied Mathematics | 2학기 | 
| 푸리에해석과응용 | Mark A. Pinsky | Introduction to Fourier Analysis and Wavelets | 2학기/격년과목 | 
| C. Gasgvet and P. Witomski | Fourier Analysis and Applicatins |