(참고 : 청록색으로 표시된 책은 2004, 2005학년도에 주교재로 쓰인 책입니다.)
2학년
| 과목 | 저자 | 제목 |
개설학기/격년여부 |
|---|---|---|---|
| 선형대수학1,2 |
이인석 |
학부 대수학 강의1-선형대수와 군 |
1학기, 2학기 |
|
S.H. Friedberg, A.J. Insel, L.E. Spence |
Linear Algebra, 4th ed. | ||
| S. Lang | Linear Algebra | ||
|
해석개론1,2 |
김성기, 김도한, 계승혁 | 해석개론, 개정판 |
1학기, 2학기 |
|
W. Rudin |
Principles of Mathematical Analysis 3rd ed. | ||
| M. H. Protter and C. B. Murrey | A First Course in Real Analysis, 2nd ed. | ||
|
집합과수리논리 |
Velleman |
How to Prove it |
1학기 |
| P. R. Halmos | Naive Set theory | ||
| K. Hrbacek and T. Jech | Introduction to set theory, 3rd edition | ||
| C. C. Pinter | Set Theory | ||
| 미분방정식 및 연습 | M. Braun | Differential Equations and their Applications, 4th ed. |
2학기 |
| P. D. Ritger, N. J. Rose | Differential Equations with applications | ||
| Boyce, DiPrima | Elementary Differential Equations and Boundary Value Problems |
3학년
| 과목 | 저자 | 제목 |
개설학기/격년여부 |
|---|---|---|---|
| 현대대수학 1,2 | J. B. Fraleigh | A first Course in Abstract Algebra, 6th ed. |
1학기, 2학기 |
| N. Jacobson | Basic Algebra I | ||
| I. N. Herstein | Topics in Algebra | ||
| M. Artin | Algebra | ||
| 미분기하학개론 1,2 | 김홍종 | [1] [2] |
1학기, 2학기 |
| B. O'Neil | Elementary Differential Geometry | ||
| M. P. do Carmo | Differential Geometry of Curves and Surfaces | ||
|
McCleary |
Geometry from a differentiable viewpoint | ||
|
복소함수론 |
H. Silverman |
Complex Variables |
1학기 |
|
L.V.Ahlfors |
Complex Analysis | ||
|
수치선형대수 |
Ward Cheney, David Kincaid |
Numerical Mathematics and Computing, 5th ed. |
1학기 |
| S. D. Conte and C. de Boor | Elementary Numerical Analysis | ||
|
Cullen, CHarles G |
An Introduction to Numerical Linear Algebra | ||
|
다변수해석학 |
Michael Spivak |
Calculus on Manifolds |
1학기 |
| 수치해석개론 | J. Stoer, R. Bulirsch | Introduction to Numerical Anlaysis, 2nd ed. |
2학기 |
| S.D. Conte, C. de Boor | Elementary Numerical Analysis, 3rd ed. | ||
|
복소해석학개론 |
J.W. Brown and R.V. Churchill |
Complex Variables and applications |
2학기 |
| 위상수학개론1 | D. W. Kahn | Topology, An introduction to the Point-Set and Algebraic Areas |
2학기 |
| J. R. Munkres | Topology : A First Course | ||
|
문명호, 박종일 |
위상수학입문 |
4학년
| 과목 | 저자 | 제목 |
개설학기/격년여부 |
|---|---|---|---|
| 위상수학개론 2 | D. W. Kahn | Topology, An introduction to the Point-Set and Algebraic Areas |
1학기 |
| J. R. Munkres | Topology : A First Course | ||
| W. S. Massey | Algebraic Topology: An Introduction | ||
|
문명호, 박종일 |
위상수학입문 | ||
| 편미분 방정식 | W. A. Strauss | Partial Differential Equations, An Introduction |
1학기 |
| L. C. Evans | Berkeley Mathematics Lecture Notes, Volume 3A-3B | ||
| Zachmanoglou, Thoe | Introduction to Partial Differential Equations with applications | ||
| R.B. Guenther, J.W. Lee | Partial Differential Equations of Mathematical Physics and Integral Equations | ||
| 실변수함수론 | 김성기, 계승혁 | 실해석 |
1학기 |
| H. L. Royden | Real Analysis | ||
| G. B. Folland | Real Analysis | ||
| F. Jones | Lebesgue integration on Euclidean space | ||
|
대수적코딩이론 |
V. Pless |
Introduction to the theory of error-correcting codes |
1학기/격년과목 |
|
R. J. McEliece |
The theory of information and coding | ||
|
J. H. van Lint |
Introduction to coding theory | ||
|
정수론과암호 |
N. Koblitz |
A Course in Number Theory and Cryptography |
1학기/격년과목 |
|
D.R. Stinson |
Cryptography - Theory and Practice | ||
|
박승안 |
대수학과 암호학 | ||
|
카오스와 동역학계 |
Steven H. Strogatz |
Nonlinear Dynamics and Chaos |
1학기/격년과목 |
|
금융수학 |
Baxter and Rennie |
Financial Calculus |
1학기/격년과목 |
|
John C. Hull |
Options, Futures, other Derivatives, 4th ed. | ||
| 기하대수 | Morton L. Curtis | Matrix Groups |
2학기/격년과목 |
|
수학사 |
Eves |
Introduction to the history of mathematics |
2학기 |
| 대수기하학개론 | W. Fulton | Algebraic Curves |
2학기/격년과목 |
|
응용편미분방정식 |
j. Billingham and A.C. King, Wave Motion, |
Cambridge Texts in Applied Mathematics |
2학기 |
|
푸리에해석과응용 |
Mark A. Pinsky |
Introduction to Fourier Analysis and Wavelets |
2학기/격년과목 |
|
C. Gasgvet and P. Witomski |
Fourier Analysis and Applicatins |